亚洲一级毛片欧美一级说乱,a在线观看欧美在线观看,国产成人综合洲欧美在线,99精品久久久久久久婷婷

您現(xiàn)在的位置: 故事分享網(wǎng)m.8c1c.com >> 童話故事 >> 正文
  《幾何原本》讀后感3000字           ★★★ 【字體:
《幾何原本》讀后感3000字
作者:佚名    童話故事來(lái)源:本站原創(chuàng)    點(diǎn)擊數(shù):    更新時(shí)間:2023/5/25    

  《幾何原本》讀后感3000字:

  公理化結(jié)構(gòu)是近代數(shù)學(xué)的主要特征。而《原本》是完成公理化結(jié)構(gòu)的最早典范,它產(chǎn)生于兩千多年前,這是難能可貴的。不過(guò)用現(xiàn)代的標(biāo)準(zhǔn)去衡量,也有不少缺點(diǎn)。首先,一個(gè)公理系統(tǒng)都有若干原始概念,或稱不定義概念,作為其他概念定義的基礎(chǔ)。點(diǎn)、線、面就屬于這一類。而在《原本》中一一給出定義,這些定義本身就是含混不清的。其次是公理系統(tǒng)不完備,沒(méi)有運(yùn)動(dòng)、順序、連續(xù)性等公理,所以許多證明不得不借助于直觀。此外,有的公理不是獨(dú)立的,即可以由別的公理推出。這些缺陷直到1899年希爾伯特(Hilbert)的《幾何基礎(chǔ)》出版才得到了補(bǔ)救。盡管如此,畢竟瑕不掩瑜,《原本》開(kāi)創(chuàng)了數(shù)學(xué)公理化的正確道路,對(duì)整個(gè)數(shù)學(xué)發(fā)展的影響,超過(guò)了歷史上任何其他著作。

  《原本》的兩個(gè)理論支柱--比例論和窮竭法。為了論述相似形的理論,歐幾里得安排了比例論,引用了歐多克索斯的比例論。這個(gè)理論是無(wú)比的成功,它避開(kāi)了無(wú)理數(shù),而建立了可公度與不可公度的正確的比例論,因而順利地建立了相似形的理論。在幾何發(fā)展的歷史上,解決曲邊圍成的面積和曲面圍成的體積等問(wèn)題,一直是人們關(guān)注的重要課題。這也是微積分最初涉及的問(wèn)題。它的解決依賴于極限理論,這已是17世紀(jì)的事了。然而在古希臘于公元前三四世紀(jì)對(duì)一些重要的面積、體積問(wèn)題的證明卻沒(méi)有明顯的極限過(guò)程,他們解決這些問(wèn)題的理念和方法是如此的超前,并且深刻地影響著數(shù)學(xué)的發(fā)展。

  化圓為方問(wèn)題是古希臘數(shù)學(xué)家歐多克索斯提出的,后來(lái)以“窮竭法”而得名的方法。“窮竭法”的依據(jù)是阿基米得公理和反證法。在《幾何原本》中歐幾里得利用“窮竭法”證明了許多命題,如圓與圓的面積之比等于直徑平方比。兩球體積之比等于它們的直徑的立方比。阿基米德應(yīng)用“窮竭法”更加熟練,而且技巧很高。并且用它解決了一批重要的面積和體積命題。當(dāng)然,利用“窮竭法”證明命題,首先要知道命題的結(jié)論,而結(jié)論往往是由推測(cè)、判斷等確定的。阿基米德在此做了重要的工作,他在《方法》一文中闡述了發(fā)現(xiàn)結(jié)論的一般方法,這實(shí)際又包含了積分的思想。他在數(shù)學(xué)上的貢獻(xiàn),奠定了他在數(shù)學(xué)史上的突出地位。

  作圖問(wèn)題的研究與終結(jié)。歐幾里得在《原本》中談了正三角形、正方形、正五邊形、正六邊形、正十五邊形的作圖,未提及其他正多邊形的作法。可見(jiàn)他已嘗試著作過(guò)其他正多邊形,碰到了“不能”作出的情形。但當(dāng)時(shí)還無(wú)法判斷真正的“不能作”,還是暫時(shí)找不到作圖方法。

  高斯并未滿足于尋求個(gè)別正多邊形的作圖方法,他希望能找到一種判別準(zhǔn)則,哪些正多邊形用直尺和圓規(guī)可以作出、哪些正多邊形不能作出。也就是說(shuō),他已經(jīng)意識(shí)到直尺和圓規(guī)的“效能”不是萬(wàn)能的,可能對(duì)某些正多邊形不能作出,而不是人們找不到作圖方法。1801年,他發(fā)現(xiàn)了新的研究結(jié)果,讀后感這個(gè)結(jié)果可以判斷一個(gè)正多邊形“能作”或“不能作”的準(zhǔn)則。判斷這個(gè)問(wèn)題是否可作,首先把問(wèn)題化為代數(shù)方程。然后,用代數(shù)方法來(lái)判斷。判斷的準(zhǔn)則是:“對(duì)一個(gè)幾何量用直尺和圓規(guī)能作出的充分必要條件是:這個(gè)幾何量所對(duì)應(yīng)的數(shù)能由已知量所對(duì)應(yīng)的數(shù),經(jīng)有限次的加、減、乘、除及開(kāi)平方而得到。”(圓周率不可能如此得到,它是超越數(shù),還有e、劉維爾數(shù)都是超越數(shù),我們知道,實(shí)數(shù)是不可數(shù)的,實(shí)數(shù)分為有理數(shù)和無(wú)理數(shù),其中有理數(shù)和一部分無(wú)理數(shù),比如根號(hào)2,是代數(shù)數(shù),而代數(shù)數(shù)是可數(shù)的,因此實(shí)數(shù)中不可數(shù)是因?yàn)槌綌?shù)的存在。雖然超越數(shù)比較多,但要判定一個(gè)數(shù)是否為超越數(shù)卻不是那么的簡(jiǎn)單。)至此,“三大難題”即“化圓為方、三等分角、二倍立方體”問(wèn)題是用尺規(guī)不能作出的作圖題。正十七邊形可作,但其作法不易給出。高斯(Gauss)在1796年,19歲時(shí),給出了正十七邊形的尺規(guī)作圖法,并作了詳盡的討論。為了表彰他的這一發(fā)現(xiàn),他去世后,在他的故鄉(xiāng)不倫瑞克建立的紀(jì)念碑上面刻了一個(gè)正十七邊形。

  幾何中連續(xù)公理的引入。由歐氏公設(shè)、公理不能推出作圖題中“交點(diǎn)”存在。因?yàn)椋渲袥](méi)有連續(xù)性(公理)概念。這就需要給歐氏的公理系統(tǒng)中添加新的公理--連續(xù)性公理。雖然19世紀(jì)之前費(fèi)馬與笛卡爾已經(jīng)發(fā)現(xiàn)解析幾何,代數(shù)有了長(zhǎng)驅(qū)直入的進(jìn)展,微積分進(jìn)入了大學(xué)課堂,拓?fù)鋵W(xué)和射影幾何已經(jīng)出現(xiàn)。但是,數(shù)學(xué)家對(duì)數(shù)系理論基礎(chǔ)仍然是模糊的,沒(méi)有引起重視。直觀地承認(rèn)了實(shí)數(shù)與直線上的點(diǎn)都是連續(xù)的,且一一對(duì)應(yīng)。直到19世紀(jì)末葉才完滿地解決了這一重大問(wèn)題。從事這一工作的學(xué)者有康托(Cantor)、戴德金(Dedekind)、皮亞諾(Peano)、希爾伯特(Hilbert)等人。當(dāng)時(shí),康托希望用基本序列建立實(shí)數(shù)理論,代德金也深入地研究了無(wú)理數(shù)理念,他的一篇論文發(fā)表在1872年。在此之前的1858年,他給學(xué)生開(kāi)設(shè)微積分時(shí),知道實(shí)數(shù)系還沒(méi)有邏輯基礎(chǔ)的保證。因此,當(dāng)他要證明“單調(diào)遞增有界變量序列趨向于一個(gè)極限”時(shí),只得借助于幾何的直觀性。實(shí)際上,“直線上全體點(diǎn)是連續(xù)統(tǒng)”也是沒(méi)有邏輯基礎(chǔ)的。更沒(méi)有明確全體實(shí)數(shù)和直線全體點(diǎn)是一一對(duì)應(yīng)這一重大關(guān)系。如,數(shù)學(xué)家波爾查奴(Bolzano)把兩個(gè)數(shù)之間至少存在一個(gè)數(shù),認(rèn)為是數(shù)的連續(xù)性。實(shí)際上,這是誤解。因?yàn)椋魏蝺蓚(gè)有理數(shù)之間一定能求到一個(gè)有理數(shù)。但是,有理數(shù)并不是數(shù)的全體。有了戴德金分割之后,人們認(rèn)識(shí)至波爾查奴的說(shuō)法只是數(shù)的稠密性,而不是連續(xù)性。由無(wú)理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì)。直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來(lái)定義無(wú)理數(shù),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無(wú)理數(shù)被認(rèn)為“無(wú)理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī)。

  《原本》還研究了其它許多問(wèn)題,如求兩數(shù)(可推廣至任意有限數(shù))最大公因數(shù),數(shù)論中的素?cái)?shù)的個(gè)數(shù)無(wú)窮多等。

  在高等數(shù)學(xué)中,有正交的概念,最早的概念起源應(yīng)該是畢達(dá)哥拉斯定理,我們稱之為勾股定理,只是勾3股4弦5是一種特例,而畢氏定理對(duì)任意直角三角形都成立。并由畢氏定理,發(fā)現(xiàn)了無(wú)理數(shù)根號(hào)2。在數(shù)學(xué)方法上初步涉及演繹法,又在證明命題時(shí)用了歸謬法(即反證法)。可能由于受丟番圖(Diophantus)對(duì)一個(gè)平方數(shù)分成兩個(gè)平方數(shù)整數(shù)解的啟發(fā),350多年前,法國(guó)數(shù)學(xué)家費(fèi)馬提出了著名的費(fèi)馬大定理,吸引了歷代數(shù)學(xué)家為它的證明付出了巨大的努力,有力地推動(dòng)了數(shù)論用至整個(gè)數(shù)學(xué)的進(jìn)步。1994年,這一曠世難題被英國(guó)數(shù)學(xué)家安德魯威樂(lè)斯解決。

  多少年來(lái),千千萬(wàn)萬(wàn)人(著名的有牛頓(Newton)、阿基米德(Archimedes)等)通過(guò)歐幾里得幾何的學(xué)習(xí)受到了邏輯的訓(xùn)練,從而邁入科學(xué)的殿堂。

童話故事錄入:admin    責(zé)任編輯:admin 
  • 上一個(gè)童話故事:

  • 下一個(gè)童話故事: 沒(méi)有了
  •   相關(guān)文章
    普通童話故事 《幾何原本》讀后感3000字
    普通童話故事 讀《孩子你慢慢來(lái)》讀后感800字
    普通童話故事 讀《鄉(xiāng)土中國(guó)》有感800字
    普通童話故事 高中讀《麥田里的守望者》讀后感800字
    普通童話故事 交流-好爸爸勝過(guò)好老師讀后感500字
    普通童話故事 《天藍(lán)色的彼岸》讀后感800字
    普通童話故事 《高山上的小郵局》讀后感800字
    普通童話故事 讀《活著》讀后感600字
    普通童話故事 《少年巴比倫》讀后感200字
    普通童話故事 《創(chuàng)始人》讀后感600字
    普通童話故事 菜根譚讀后感心得體會(huì)2000字
    普通童話故事 《武漢封城日記》讀后感3000字
    普通童話故事 《小狐貍買手套》讀后感800字
    普通童話故事 《弟子規(guī)》讀后感400字左右作文
    普通童話故事 讀《聯(lián)盟》讀后感500字
    普通童話故事 讀《做一個(gè)講道理的數(shù)學(xué)老師》有感80…
    普通童話故事 楊絳《走到人生邊上》讀后感1500字
    普通童話故事 稻盛和夫《干法》讀后感2000字
    普通童話故事 平衡欲望——《白色巨塔》讀后感800字
    普通童話故事 《平凡的世界》讀后感200字
    普通童話故事 《三體》讀后感書評(píng)1000字
    普通童話故事 讀《自己的花是讓別人看的》有感500字
    普通童話故事 《皮格馬利翁效應(yīng)》讀后感2000字
    普通童話故事 古龍《蒼穹神劍》讀后感600字
    普通童話故事 讀《日瓦戈醫(yī)生》讀后感1500字
    普通童話故事 讀書推薦《干法》讀后感800字
    普通童話故事 《熊鎮(zhèn)2》讀后感1000字
    普通童話故事 《那些回不去的年少時(shí)光》讀后感600字
    普通童話故事 我在未來(lái)等你讀后感1000字
    普通童話故事 《飄》讀后感300字
    故事分享網(wǎng)聲明:本站部分資源來(lái)源于網(wǎng)絡(luò),版權(quán)歸原作者或者來(lái)源機(jī)構(gòu)所有,如作者或來(lái)源機(jī)構(gòu)不同意本站轉(zhuǎn)載采用,請(qǐng)通知我們,我們將第一時(shí)間刪除內(nèi)容!粵ICP備2022003335號(hào) 站長(zhǎng):